Processing Azure Analysis Services with OAuth Sources (like Azure Data Lake Store)

As you probably know from my last blog post, I am currently upgrading the PowerBI reporting platform of one of my customer from a PowerBI backend (dataset hosted in PowerBI service) to an Azure Analysis Services backend. The upgrade/import of the dataset into Azure Analysis Services itself worked pretty flawless and after switching the connection of the reports everything worked as expected and everyone was happy. However, things got a bit tricky when it came to automatically refreshing the Azure Analysis Services database which was based on an Azure Data Lake Store. For the original PowerBI dataset, this was pretty straight forward as a scheduled refresh from an Azure Data Lake store data source works out of the box. For Azure Analysis Services this is a bit different.

When you build and deploy your data model from Visual Studio, your are prompted for the credentials to access ADLS which are then stored in the data source object of AAS. As you probably know, AAS uses OAuth authentication to access data from ADLS. And this also causes a lot of problems. OAuth is based on tokens and those tokens are only valid for a limited time, by default this is 2 hours. This basically means, that you can process your database for the next 2 hours and it will fail later on with an error message saying that the token expired. (The above applies to all OAuth sources!)
This problem is usually solved by using an Azure Service Principal instead of a regular user account where the token does not expire. Unfortunately, this is not supported at the moment for ADLS data sources and you have to work around this issue.

So the current situation that we need to solve is as follows:

  • we can only use regular user accounts to connect AAS to ADLS as service principals are not supported yet
  • the token expires after 2 hours
  • the database has to be processed on a regular basis (daily, hourly, …) without any manual interaction
  • manually updating the token is (of course) not an option

Before you continue here, make sure that you read this blog post first:
It describes the general approach of using Azure Automation to process an Azure Analysis Services model and most of the code in this blog post if based on this!
Also this older blog post will be a good read as some concepts and code snippets are reused here.

Back to our example – as we were already using Azure Automation for some other tasks, we decided to also use it here. Also, PowerShell integrates very well with other Azure components and was the language of choice for us. To accomplish our goal we had to implement 3 steps:

  1. acquire a new OAuth token
  2. update the ADLS data source with the new token
  3. run our processing script

I could copy the code for the first step more or less from one of my older blog post (here) where I used PowerShell to acquire an OAuth token to trigger a refresh in PowerBI.

The second step is to update ADLS data source of our Azure Analysis Services model. To get started, the easiest thing to do is to simply open the AAS database in SQL Server Management Studio and let it script the existing datasource for you: AAS_Script_OAuth_DataSource
The resulting JSON will look similar to this one:

Update ADLS DataSource
  "createOrReplace": {
    "object": {
      "database": "Channel Analytics",
      "dataSource": "DS_ADLS"
    "dataSource": {
      "type": "structured",
      "name": "DS_ADLS",
      "connectionDetails": {
        "protocol": "data-lake-store",
        "address": {
          "url": ""
      "credential": {
        "AuthenticationKind": "OAuth2",
        "token_type": "********",
        "scope": "********",
        "expires_in": "********",
        "ext_expires_in": "********",
        "expires_on": "********",
        "not_before": "********",
        "resource": "********",
        "id_token": "********",
        "kind": "DataLake",
        "path": "",
        "RefreshToken": "********",
        "AccessToken": "********"

The important part for us is the “credential” field. It contains all the information necessary to authenticate against our ADLS store. However, most of this information is sensitive so only asterisks are displayed in the script. The rest of the JSON (except for the “credential” field) is currently hardcoded in the PowerShell cmdlet so if you want to use it, you need to change this manually!
The PowerShell cmdlet then combines the hardcoded part with an updated “credential”-field which is obtained by invoking a REST request to retrieve a new OAuth token. The returned object is modified a bit in order to match the required JSON for the datasource.
Once we have our final JSON created, we can send it to our Azure Analysis Services instance by calling the Invoke-ASCmd cmdlet from the SqlServer module.
Again, please see the original blog post mentioned above for the details of this approach.

After we have updated our datasource, we can simply call our regular processing commands which will then be executed using the newly updated credentials.
The script I wrote allows you to specify which objects to process in different ways:

  • whole database (by leaving AASTableName and AASPartitionName empty)
  • a single or multiple table and all its partitions (by leaving only AASPartitionName empty)
  • or multiple partitions of a single table (by specifying exactly one AASTableName and multiple AASPartitionNames

If multiple tables or partitions are specified, the elements are separated by commas (“,”)

So to make the Runbook work in your environment, follow all the initial steps as described in the original blog post from Microsoft. In addition, you also need to create an Application (Type = “Native”) in your Azure Active Directory to obtain the OAuth token programmatically. This application needs the “Sign in and read user profile” permission from the API “Windows Azure Active Directory (Microsoft.Azure.ActiveDirectory)”:
Also remember the ApplicationID, it will be used as a parameter for the final PowerShell Runbook (=parameter “ClientID”!
When it comes to writing the PowerShell code, simply use the code from the download at the end of this blog post.

For the actual credential that you are using, make sure that it has the following permissions:

  • to update the AAS datasource (can be set in the AAS model or for the whole server)
  • has access to the required ADLS files/folders which are processed (can be set e.g. via ADLS Data Explorer)
  • (if you previously used your own account to do all the AAS and ADLS development, this should work just fine)

In general, a similar approach should work for all kinds of datasources that require OAuth authentication but so far I have only tested it with Azure Data Lake Store!

Download: AAS_Process_OAuth_Runbook.ps1

Refresh PowerBI Datasets using PowerShell and Azure Runbooks

In June 2017, Microsoft announced a new set of API function to manage data refreshes in PowerBI. The new API basically allows you to trigger a refresh or retrieve the history of previously executed refreshes. The full specification can be found in the official MSDN documentation, or using this direct links: Refresh dataset and Get dataset refresh history

So besides the scheduled and manual refreshes from within the PowerBI service directly, we now have a third option to trigger refreshes but this time also from an external caller! This itself is already pretty awesome and some people already did some cool stuff leveraging the new API functions:

Charles Sterling: Running the Power BI Refresh API’s Headless
Sirui Sun: Git-Repository powerbi-powershell

The basic idea is to use object from pre-built Azure Management DLLs to generate the OAuth Access token that is necessary to use the API. This works very well locally but cannot be used in the cloud – e.g. in combination with Azure Automation Runbooks or Azure Functions where you cannot install or reference any custom DLLs.

In this blog post I will show you how you can accomplish exactly this  – create an Azure Automation Runbook to refresh your PowerBI dataset!
But first of all there are some things that you need to keep in mind:

  1. There are no service accounts in PowerBI so we will always use a “real” user
  2. you need to supply the credentials of a “real” user
  3. The user needs to have appropriate access to the dataset in order to refresh it
  4. the dataset refresh must succeed if you do it manually in PowerBI
  5. you are still limited to 8 refreshes/day through the API

OK, so lets get started. First of all we need an Azure Application which has permissions in PowerBI. The easiest way to do this is to use the navigate to, log in with your account and simply follow the steps on the screen. The only import thing is to select the App Type “Native app”. At the end, you will receive a ClientID and a ClientSecret – Please remember the ClientID for later use!

Next step is to create the Azure Runbook. There are plenty of tutorials out there on how to do this: My first PowerShell workflow runbook or Creating or importing a runbook in Azure Automation so I will no go into much more detail here. Besides the runbook itself you also need to create an Automation Credential to store the username and password in a secure way – here is a tutorial for this: Credential Assets in Azure Automation

Now lets take a look at the PowerShell code. Instead of using any pre-built DLLs I removed all unnecessary code and do all the communication using Invoke-RestMethod. This is a very low-level function and is part of the standard PowerShell modules so there is no need to install anything! The tricky part is to acquire an Authentication Token using username/password as it is nowhere documented (at least I could not find it) what the REST call has to look like. So I used Fiddler to track the REST calls that the pre-built DLLs use and rebuilt them using Invoke-RestMethod. This is what I came up with:

Get Authentication Token
$authUrl = ""
$body = @{
    "resource" =";
    "client_id" = $clientId;
    "grant_type" = "password";
    "username" = $pbiUsername;
    "password" = $pbiPassword;
    "scope" = "openid"

$authResponse = Invoke-RestMethod -Uri $authUrlMethod POST -Body $body

$clientId is the ClientID of the Azure AD Application
$pbiUsername is the email address of the PowerBI user.
$pbiPassword is the password of the PowerBI user.
The $authRepsonse then contains our Authentication token which we can use to make our subsequent calls:

Trigger Refresh in PowerBI
$restURL = "$pbiDatasetId/refreshes"
$headers = @{
    "Content-Type" = "application/json";
    "Authorization" = $authResponse.token_type + " " + $authResponse.access_token

$restResponse = Invoke-RestMethod -Uri $restURLMethod POST -Headers $headers

And that’s all you need. I wrapped everything into a PowerShell function that can be used as an Azure Runbook. The username/password is derived from an Azure Automation Credential.

The final runbook can be found here: PowerBI_Refresh_Runbook.ps1


It takes 4 Parameters:

  1. CredentialName – the name of the Azure Automation credential that you created and which stores the PowerBI username and password
  2. ClientID – the ID of your Azure Active Directory Application which you created in the first step
  3. PBIDatasetName – the name of the PowerBI dataset that you want to refresh
  4. PBIGroupName – (optional) the name of the group/workspace in which the PowerBI dataset from 3) resides

When everything is working as expected, you can create custom schedules or even create webhooks to trigger the script and refresh you PowerBI dataset! As you probably know, this is really powerful as you can now make the refresh of the PowerBI dataset part of your daily ETL job!