Release of Fabric Studio v1.0

I am very proud to announce the first public release of Fabric Studio v1.0 – a VSCode extension that allows you to manage and develop your Fabric workspace(s). Similar to Power BI Studio, it seamlessly integrates into VSCode for increased productivity for professional developers and admins alike.

It includes a lot of different features of which the most notable are probably these:

  • a generic workspace browser supporting all Fabric item types and their most common API actions
  • a custom file system provider allowing you to modify Fabric items as if they were local
  • a dedicated deployment pipeline manager
  • an integration of the Fabric Git into VSCode source control
  • a VSCode Fabric notebook to run arbitrary API calls

Workspace Browser

The workspace browser gives you an overview of all items that currently exist in your workspaces. This includes all items that currently exist and automatically extends to new items that might get added in the future. For selected items specific entries in the context menu were added e.g. Copy SQL ConnectionString, Run Notebook, …

There is also a common set of actions that exist for every item like opening the selected item directly in the Fabric Service via your browser or copy its ID or Name.

At the top you will find icons that allow you to filter the list of workspaces, refresh the current item, edit the items (e.g. semantic models, pipelines, … see below) or open a notebook that allows you to run arbitrary calls against the Fabric REST API.

Edit Fabric Items from VSCode

Using the context menu in the Workspace Browser you can select Edit Items which will open the definition of the selected item in your VSCode Solution Explorer as a new folder. You can either do this on the workspace level, a specific item type folder (Pipelines, Notebooks, …) or on an individual item. As of now, not all items are supported – here is a list of items that are supported as of now:

  • Semantic Models using TMDL (.tmdl)
  • Reports using PBIR (.json)
  • Data Pipelines using JSON (.json)
  • Notebooks using Python (.py) or Jupyter Notebooks (.ipynb)
  • Spark Job Definitions using JSON (.json)
  • Mirrored Databases using JSON (.json)

This feature is implemented using VSCode Custom File System providers which makes it behave as if it were a local file system. This means you can also copy&paste or drag&drop between Fabric and your local file system – in both directions! The use-cases are unlimited here:

  • easily copy a semantic model or report from one workspace to another
  • upload the report of a local PBI Project (.pbip) to Fabric without having to also publish and overwrite the dataset
  • do bulk-edits on your notebooks or pipelines

Once you are done with your changes, you can use “Publish to Fabric” to upload them back to Fabric and make the new version available to your users.

Deployment Pipelines

Selectively deploy individual items or whole item types (multi-select!)into the next stage directly from VSCode.

Fabric Git Integration

If your Fabric workspace is linked to GIT, you can now mange it from VSCode as if it were a local repository. Stage/Unstage/Discard changes or pull the latest changes from the underlying GIT repository.

Fabric API Notebooks

As Fabric Studio is solely based on the REST APIs provided by Fabric, I also wanted to offer a way to make running arbitrary API calls as easy as possible. The main problem when it comes to REST APIs is always authentication. As the API is already authenticated in the background, we can use the same mechanisms to also run any other API calls as well. Notebooks in VSCode offer an intuitive way to to do this. Another reason for this generic way of doing API calls is that not all endpoints will be covered by the UI so it just made sense to offer this option as well.

There would be a lot more features worth being mentioned here but instead I will create short demo videos and publish them via my social media channels (Bluesky, X/Twitter, LinkedIn). So to stay up-to-date with the most recent developments, make sure to also follow me there!

The last thing I want to mention is that the whole project is 100% open source and can be used under the MIT license. The repository is currently hosted in my GitHub account: https://github.com/gbrueckl/FabricStudio. If you are interested in the project and maybe want to contribute to it, please reach out to me!

If you like Fabric Studio but are working mainly with Power BI, make sure to also check out Power BI Studio – another extension developed by me, specifically tailored towards Power BI developers and admins!

Databricks VSCode Extension – Release v1.0!

As you probably know from my previous posts, my colleagues at paiqo.com and I are constantly working to improve our VSCode extension for Databricks. Almost every month we silently release a new version to the VSCode gallery so you get the latest features. However, as this is a special release, I am also writing a dedicated blog post for it

We are very happy to finally announce the first official release of our VSCode extension for Databricks!

Probably the biggest and most awaited new feature is the ability to interactively execute your local Spark/SQL/Scala/R code against one of your running Databricks clusters and get the results back in VSCode! At least every 3rd issue that was opened in our Github Repo was requesting this feature and now it is finally here. It integrates seamlessly into VSCode notebooks by automatically creating a new kernel for every active Databricks cluster in your workspace. So just open one of your notebook, select the Databricks cluster kernel and start working!

Integrating it natively with VSCode notebooks brings some very nice features out of the box:

  • leverages all other extensions that work with Python or notebooks:
    syntax highlighting, auto-completion, colored indention levels (e.g using indent-rainbow)
  • use custom renderers to visualize your tables (e.g. vscode-data-tables)

In addition to all the features already mentioned above, it also solves some issues that you may had with other solutions like databricks-connect (which is also deprecated by now). The following things also work with the new Databricks VSCode notebook kernel:

  • full access to the DBFS including mountpoints
  • most dbutils functions like dbutils.secrets
  • magics like %pip, %md and all language-specific magics

However, besides all those great new features and capabilities, there are also some things that still need improvement. Here is a list of known issues:

  • widgets are currently not supported – that’s our highest priority at the moment
  • features from files-in-repos are not yet supported
  • only works with .ipynb files
  • the notebook sometimes opens twice
  • found any other issues? report them at at issues-page

All further details can be found in the README.md of the Github repository.

Let us know what you think of and provide some feedback! If you already had an older version of the extension installed, it will update automatically. If you have not used it yet, just install it directly via the VSCode extensions or download it from the VSCode gallery or our GitHub repository:

VS Code gallery: paiqo.Databricks-VSCode
Github repository: Databricks-VSCode

Professional Development for Databricks with Visual Studio Code

When working with Databricks you will usually start developing your code in the notebook-style UI that comes natively with Databricks. This is perfectly fine for most of the use cases but sometimes it is just not enough. Especially nowadays, where a lot of data engineers and scientists have a strong background also in regular software development and expect the same features that they are used to from their original Integrated Development Environments (IDE) also in Databricks.

For those users Databricks has developed Databricks Connect (Azure docs) which allows you to work with your local IDE of choice (Jupyter, PyCharm, RStudio, IntelliJ, Eclipse or Visual Studio Code) but execute the code on a Databricks cluster. This is awesome and provides a lot of advantages compared to the standard notebook UI. The two most important ones are probably the proper integration into source control / git and the ability to extend your IDE with tools like automatic formatters, linters, custom syntax highlighting, …

While Databricks Connect solves the problem of local execution and debugging, there was still a gap when it came to pushing your local changes back to Databricks to be executed as part of a regular ETL or ML pipeline. So far you had to either “deploy” your changes by manually uploading them via the Databricks UI again or write a script that uploads it via the REST API (Azure docs).

NOTE: I also published a PowerShell module that eases the automation/scripting of these tasks also as part of CI/CD pipeline. It is available from the PowerShell gallery DatabricksPS and integrates very well with this VSCode extension too!

However, this is not really something you would call a “seamless experience” so I also started working on an extension for Visual Studio Code to work more efficiently with Databricks. It has been in the VS Code gallery (Databricks VSCode) for about a month now and I received mostly positive feedback so far. Now I am at a stage where I want to get more people to use it – hence this blog post to announce it officially. The extension is currently published under GPLv3 license and is free to use for everyone. The GIT repository is also linked in the VS Code gallery if you want to participate or have any issues with the extension.

It currently supports the following features:

  • Workspace browser
    • Up-/download of notebooks and whole folders
    • Compare/Diff of local vs online notebook (currently only supported for raw files but not for notebooks)
    • Execution of local code and notebooks against a Databricks Cluster (via Databricks-Connect)
  • Cluster manager
    • Start/stop clusters
    • Script cluster definition as JSON
  • Job browser
    • Start/stop jobs
    • View job-run history + status
    • Script job definition as JSON
    • Script job-run output as JSON
  • DBFS browser
    • Upload files
    • Download files
    • (also works with mount points!)
  • Secrets browser
    • Create/delete secret scopes
    • Create/delete secrets
  • Support for multiple Databricks workspaces (e.g. DEV/TEST/PROD)
  • Easy configuration via standard VS Code settings

More features to come in the future but these will be mainly based on the requests that come from users or my personal needs. So your feedback is highly appreciated – either directly here or using the feedback section in the GIT repository.

I will also write some follow up post to show you how to work in the most efficient way using this new VSCode extension in combination with your Databricks workspace so stay tuned!

VS Code gallery: paiqo.Databricks-VSCode
Github repository: Databricks-VSCode